Cognitive Context Protocol (CCP)

Cognitive Context Protocol (CCP)

The World’s First Cognitive Architecture for AI Agents

Transform AI from passive context consumers into self-aware cognitive agents.

CCP provides the missing cognitive layer for Large Language Models. It acts as a Hippocampus for episodic memory and a Prefrontal Cortex for meta-cognition. By tracking confidence, confusion, and causal relationships, CCP enables agents that don’t just retrieve data, but remember, reason, and evolve over time.

MCP Compatible
14 Tools
Ollama


🌟 The Problem We Solve

Current AI systems suffer from cognitive blindness:

ProblemTraditional AICCP-Enabled AI
Self-AwarenessNone – operates blindlyKnows what it understands and what it doesn’t
ConfidenceOverconfident or underconfidentCalibrated confidence from outcome tracking
MemoryStateless or simple RAGEpisodic memory with emotional valence and decay
LearningRequires retrainingContinuous learning from every interaction
ReasoningCorrelationalCausal – can answer “what if?” questions
ContextFixed window, dump everythingHierarchical, load-adaptive, attention-gated

πŸ’‘ What Makes CCP Revolutionary

1. Cognitive State Awareness

Unlike any existing system, CCP maintains a multi-dimensional cognitive state vector that tracks:

{
  understanding_depth: 0.85,    // How deeply the AI comprehends the task
  confidence_score: 0.72,       // Calibrated via Rescorla-Wagner prediction error
  cognitive_load: 0.63,         // Current processing demands
  knowledge_gaps: [             // Explicit awareness of unknowns
    { domain: "user_preferences", severity: "moderate", impact: 0.45 }
  ],
  meta_cognitive_flags: {
    needs_clarification: false,  // Should it ask questions?
    exploration_required: true,  // Should it seek more context?
    confidence_threshold_met: true
  }
}

This is the first AI system that knows when it doesn’t know. It employs a Bayesian-inspired learning model (Rescorla-Wagner) where confidence is updated based on prediction error, dampened by high cognitive load, and accelerated by surprise.


2. Episodic Memory Architecture

CCP doesn’t just retrieve contextβ€”it forms semantic episodes that mirror human memory:

{
  id: "ep_2025_11_18_001",
  type: "problem_solving_session",
  semantic_summary: "User requested budget analysis with focus on Q4 anomalies",
  cognitive_elements: {
    entities: ["budget", "Q4", "anomaly_detection"],
    relationships: [
      { type: "causal", from: "spending_increase", to: "budget_overrun" }
    ],
    outcomes: { success: true, user_satisfaction: 0.9 }
  },
  emotional_valence: 0.7,        // Positive experience
  relevance_decay: {
    function: "exponential",
    half_life: "30_days"
  },
  associative_links: ["ep_2025_oct_12_043", "ep_2025_nov_01_089"]
}

Episodes are linked, decayed, and retrieved by analogyβ€”just like human memory.


3. Causal Cognitive Modeling (Breakthrough)

CCP doesn’t just find correlationsβ€”it builds causal graphs and reasons counterfactually:

Q: "What would have happened if we hadn't added caching?"
A: "Based on causal analysis of 47 similar episodes:
    - Response time would be 340% higher (confidence: 0.84)
    - User satisfaction would drop to 0.45 (confidence: 0.71)
    - Causal path: no_cache β†’ slow_queries β†’ timeout_errors β†’ user_frustration"

This is the first AI that can answer “what if?” questions about its own experiences.


4. Hierarchical Context Abstraction (Breakthrough)

CCP organizes information across 4 abstraction levels, dynamically selecting based on task:

Level 4: Strategic Insight    β”‚ "Market shift toward sustainability"
Level 3: Tactical Summary     β”‚ "Q3 +12%, Q4 +8%, driven by green products"
Level 2: Operational Detail   β”‚ "Product A: $2.4M +15%; Product B: $1.8M +8%"
Level 1: Complete Data        β”‚ [Full transaction records, timestamps, etc.]

For strategic planning β†’ L3-L4. For debugging β†’ L1-L2. Automatic.

This is the first AI that compresses context hierarchically like human working memory.


5. Gated Attention Filtering (Breakthrough)

Instead of dumping all context, CCP uses 5 learned attention heads to filter:

HeadWhat It Prioritizes
RecencyRecent experiences
Causal ImportanceEpisodes with clear cause-effect
Domain SimilarityRelated knowledge domains
Outcome RelevanceSuccessful past experiences
Semantic MatchQuery-relevant content

Weights are learned from outcomesβ€”the system gets better at filtering over time.

This is the first AI with learned, multi-head context attention.


6. Episodic Drift & Continuous Learning (Breakthrough)

CCP updates its understanding continuously without retraining:

Initial belief: "Marketing campaigns increase sales" (confidence: 0.6)
    ↓ 50 campaigns later
Updated: "Campaigns + seasonal timing explains 73% of variance" (confidence: 0.82)
    ↓ 200 campaigns later  
Refined: "Effectiveness varies by channel, timing, product category (RΒ²=0.89)"

With safety guardrails:

  • Reversal protection (70% evidence required)
  • Drift bounds (max 15% change per cycle)
  • Paradigm shift detection with human review triggers

This is the first AI that learns incrementally while maintaining stability.


πŸ› οΈ The 14 MCP Tools

Core Cognitive Tools

ToolWhat It Does
ccp_query_stateGet current cognitive state (understanding, confidence, gaps)
ccp_update_stateUpdate state with outcome-based calibration
ccp_create_episodeForm episodic memory with embedding
ccp_retrieve_memorySemantic + temporal + emotional retrieval
ccp_adaptive_contextLoad-aware progressive disclosure
ccp_meta_decideShould I proceed, clarify, or explore?
ccp_multimodal_fuseUnify text + visual + contextual data

Agent Coordination Tools

ToolWhat It Does
ccp_broadcast_stateShare cognitive state with agent pool
ccp_request_cognitive_supportRequest specialist agent help
ccp_sync_agent_poolGet all agents’ cognitive states

Breakthrough Tools (Phases 5-8)

ToolWhat It Does
ccp_causal_analyzeBuild causal graphs, counterfactuals, root cause
ccp_hierarchical_contextL1-L4 dynamic abstraction
ccp_gated_attentionMulti-head attention filtering
ccp_drift_detectContinuous learning + paradigm shifts

πŸš€ Quick Start

1. Start the Server

cd server
npm install
npm run dev:mcp

2. Add to Your MCP Config

{
  "ccp-server": {
    "command": "npx",
    "args": ["tsx", "path/to/ccp/server/src/mcp-server.ts"],
    "env": {
      "OLLAMA_BASE_URL": "http://localhost:11434",
      "OLLAMA_EMBED_MODEL": "nomic-embed-text"
    }
  }
}

3. Start Using Cognitive AI

// Know what you don't know
const state = await mcp.callTool('ccp_query_state', {});
console.log(`Confidence: ${state.confidence_score}`);
console.log(`Knowledge gaps: ${state.knowledge_gaps.length}`);

// Calibrate confidence (The "Learning" Step)
await mcp.callTool('ccp_update_state', {
  task_outcome: 'success'
});

// Remember and learn
await mcp.callTool('ccp_create_episode', {
  type: 'debugging',
  semantic_summary: 'Fixed race condition in auth flow',
  entities: ['auth', 'race_condition', 'async'],
  success: true
});

// Ask "what if?"
const counterfactual = await mcp.callTool('ccp_causal_analyze', {
  mode: 'counterfactual',
  intervention: 'remove async call',
  target: 'race condition'
});

πŸ“¦ SDKs

TypeScript

import { CCPClient } from '@ccp/sdk';

const ccp = new CCPClient(mcpClient);

// Cognitive state
const state = await ccp.queryState();

// Causal reasoning
const result = await ccp.counterfactual({
  intervention: 'double team size',
  target: 'project velocity'
});

// Continuous learning
const insights = await ccp.getLearningInsights();
console.log(`Model health: ${insights.modelHealth}`);

Python

from ccp import CCPClient

ccp = CCPClient(mcp_call_tool)

# Hierarchical context
context = await ccp.hierarchical_context(
    task_type='strategic_planning',
    cognitive_load=0.7
)
print(f"Abstraction level: {context['level_name']}")

# Drift detection
drift = await ccp.detect_drift()
if drift['paradigmShifts']:
    print("Major learning shift detected!")

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                     MCP Interface Layer                          β”‚
β”‚            (14 Tools + 2 Resources for AI Agents)                β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                                  β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚ Meta-Cognitive  β”‚  β”‚  Causal Engine  β”‚  β”‚ Episodic Drift  β”‚  β”‚
β”‚  β”‚    Reasoner     β”‚  β”‚  (Counterfact.) β”‚  β”‚  (Continuous    β”‚  β”‚
β”‚  β”‚                 β”‚  β”‚                 β”‚  β”‚   Learning)     β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”‚           β”‚                    β”‚                    β”‚            β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚              Cognitive State Manager                       β”‚  β”‚
β”‚  β”‚     (Understanding, Confidence, Gaps, Load Tracking)       β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”‚                               β”‚                                  β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚                   Episodic Memory Engine                   β”‚  β”‚
β”‚  β”‚    (Vector Embeddings + Semantic Episodes + Decay)         β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”‚                               β”‚                                  β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”‚
β”‚  β”‚ Hierarchical β”‚  β”‚   Gated Attention   β”‚  β”‚  Antigravity β”‚    β”‚
β”‚  β”‚   Context    β”‚  β”‚  (5 Learned Heads)  β”‚  β”‚    Bridge    β”‚    β”‚
β”‚  β”‚   (L1-L4)    β”‚  β”‚                     β”‚  β”‚  (Multi-AI)  β”‚    β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β”‚
β”‚                                                                  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚              Persistence (SQLite + Ollama Embeddings)            β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ“‹ Current Implementation

What’s Built

CCP is a fully functional MCP server with 14 cognitive tools, implemented across 8 development phases:

PhaseFeatureStatusFiles
Phase 1Core Cognitive State (Bayesian)βœ… CompletecognitiveState.ts
Phase 2MCP Server Wrapperβœ… Completemcp-server.ts (762 lines)
Phase 3Vector Embeddingsβœ… Completeembeddings.ts, persistence.ts
Phase 4Antigravity Integrationβœ… Completeantigravity-bridge.ts
Phase 5Causal Cognitive Modelingβœ… CompletecausalEngine.ts
Phase 6Hierarchical Contextβœ… CompletehierarchicalContext.ts
Phase 7Gated Attentionβœ… CompletegatedAttention.ts
Phase 8Episodic Driftβœ… CompleteepisodicDrift.ts

Code Statistics

server/src/
β”œβ”€β”€ mcp-server.ts              # 762 lines - Main MCP server with 14 tools
β”œβ”€β”€ services/
β”‚   β”œβ”€β”€ cognitiveState.ts      # Cognitive state vector management
β”‚   β”œβ”€β”€ episodicMemory.ts      # Episodic memory with embeddings
β”‚   β”œβ”€β”€ embeddings.ts          # Ollama integration (nomic-embed-text)
β”‚   β”œβ”€β”€ persistence.ts         # SQLite storage (sql.js)
β”‚   β”œβ”€β”€ adaptiveContext.ts     # Load-aware retrieval
β”‚   β”œβ”€β”€ metaReasoner.ts        # Meta-cognitive reasoning
β”‚   β”œβ”€β”€ multimodal.ts          # Multi-modal fusion
β”‚   β”œβ”€β”€ causalEngine.ts        # Phase 5: Causal graphs
β”‚   β”œβ”€β”€ hierarchicalContext.ts # Phase 6: L1-L4 abstraction
β”‚   β”œβ”€β”€ gatedAttention.ts      # Phase 7: Multi-head attention
β”‚   └── episodicDrift.ts       # Phase 8: Continuous learning
β”œβ”€β”€ integration/
β”‚   └── antigravity-bridge.ts  # Multi-agent coordination
└── protocol/
    └── ccp.capnp              # 302 lines - Binary schema

Total: ~3,500 lines of TypeScript + 302 lines Cap’n Proto

Cap’n Proto Schema

We’ve implemented a complete Cap’n Proto schema (ccp.capnp) for high-performance binary serialization:

# Core types defined
struct CognitiveStateVector { ... }    # Understanding, confidence, gaps
struct Episode { ... }                  # Episodic memory with embeddings
struct AdaptiveContextRequest { ... }   # Load-adaptive retrieval
struct MetaCognitiveDecision { ... }    # Reasoning about reasoning

# RPC interfaces ready for binary transport
interface CognitiveStateService { ... }
interface EpisodicMemoryService { ... }
interface AdaptiveContextService { ... }
interface MetaCognitiveService { ... }
interface AgentCoordinationService { ... }

Current Transport: JSON-RPC 2.0 (MCP standard)
Future Option: Cap’n Proto binary transport for zero-copy, sub-millisecond latency

SDKs

SDKLanguageStatusFeatures
TypeScript@ccp/sdkβœ… CompleteType-safe wrappers, 290 lines
Pythonccp-sdkβœ… CompleteAsync + type hints, 320 lines

Dependencies

DependencyPurpose
@modelcontextprotocol/sdkMCP protocol implementation
sql.jsPure-JS SQLite for persistence
zodRuntime type validation
ollamaLocal embeddings (768-dim)

Roadmap

  • Binary Transport: Enable Cap’n Proto for 50-70% smaller payloads
  • Quantum Integration: Connect with QuantMCP for quantum-cognitive workflows
  • Advanced Causal: Full DAG learning with intervention calculus
  • Distributed Memory: Sharded episodic memory across agent pools

πŸ“š Documentation

DocumentDescription
Cognitive Breakthrough SpecFull 1100-line protocol specification
Cap’n Proto + MCP IntegrationBinary transport design
TypeScript SDKType-safe client with examples
Python SDKAsync client with type hints

πŸ”§ Configuration

VariableDefaultDescription
OLLAMA_BASE_URLhttp://localhost:11434Ollama API
OLLAMA_EMBED_MODELnomic-embed-text768-dim embeddings

License

MIT


Built for the next generation of AI

CCP: Because AI should understand itself

Developed and Engineered by Anthony Cavanaugh for Cavanaugh Design Studio

Leave a Reply

Your email address will not be published. Required fields are marked *

Recent Posts


Post Archive


Catogery Tags